
Assessing and understanding in-stream habitat suitability 
for invertebrate families, fish species and platypus of the 

Melbourne Region with the melbstreambiota package 
(version 0.1.2) 

Christopher	J.	Walsh,	Yung	En	Chee,	Nick	Bond,	and	Rhys	Coleman	

6	Apr	2023	

Introduction 

The	models	of	macroinvertebrate	family	distributions	among	streams	of	the	Melbourne	
region	(south-eastern	Australia)	described	by	Walsh	&	Webb	(2013)	and	Walsh	&	Webb	
(2016)	(later	refined	by	Walsh	(2023))	allow	prediction	of	occurrence	of	59	
macroinvertebrate	families	in	all	stream	reaches	of	the	region.	Associated	work	
developed	similar	habitat	suitability	models	for	11	native	fish	species	(Chee	et	al.	2020)	
and	for	platypus	in	streams	of	the	region.	Three	models	for	platypus	can	be	used	in	this	
package:	

• female	platypus,	used	by	Coleman	et	al.	(2022)	and	Chee	et	al.	(2020)	to	support	
Melbourne	Water’s	Healthy	Waterway	Strategy	(Melbourne	Water	2018)	

• all	platypus,	used	by	Chee	et	al.	(2020).	

• a	revised	version	of	the	all	platypus	model	used	by	Coleman	et	al.	(2022).	

The	models	permit	predictions	under	current	conditions	(2006,	reflecting	the	time	data	
used	to	build	the	models	was	collected)	and	under	a	range	of	scenarios	(either	changes	
in	human	influence	or	change	in	climate)	by	adjusting	the	values	of	predictor	variables.	
Walsh	(2023)	further	demonstrated	that	the	ensemble	predictions	of	the	59	
macroinvertebrate	family	models	produce	reliable	predictions	of	family	richness,	and	
used	the	models	to	derive	an	index	of	stream	condition,	LUMaR,	that	provides	improved	
sensitivity	to	human	disturbance,	more	consistently	across	the	region	than	two	
commonly	used	indices:	SIGNAL	and	AUSRIVAS.	LUMaR	combines	sensitivity	
weightings	like	those	used	by	SIGNAL	Chessman	(2003)	with	an	observed:expected	
ratio	such	as	used	by	AUSRIVAS	(Simpson	&	Norris	2000).	

The	melbstreambiota	package	provides	functions	that	allow	calculation	and	mapping	of	
a)	the	environmental	variables	used	as	predictors	in	the	models,	b)	predictions	of	
occurrence	of	each	macroinvertebrate	family,	fish	species	and	platypus,	and	c)	
ensemble	predictions	of	LUMaR	score	and	other	indices	under	different	scenarios.	The	
package	also	permits	the	input	of	macroinvertebrate	data	collected	from	sites	in	the	
Melbourne	region	to	calculate	observed	LUMaR	score,	to	compare	against	the	predicted	
score	(this	task	can	also	be	achieved	using	the	web-based	app	at	
https://urbanstreams.net/tools/LUMaR/.	This	vignette	provides	examples	of	the	
application	of	the	melbstreambiota	functions	for	assessing	and	understanding	stream	
macroinvertebrate	assemblages	of	the	region.	



The	package	can	be	installed	in	R	from	https://github.com/cjbwalsh/melbstreambiota	
(see	instructions	in	README.md	below	the	list	of	files).	

Which taxa have been modelled? 

The	59	modelled	macroinvertebrate	families	and	their	codes	used	in	all	analyses	in	the	
package	are	listed	in	the	table	taxon.classes:	

• 13	caddisfly	families	(Trichoptera:	Leptoceridae,	QT25;	Calamoceratidae,	QT24;	
Atriplectididae,	QT23;	Philorheithridae,	QT21;	Calocidae,	QT18;	Helicopsychidae,	
QT17;	Conoesucidae,	QT15;	Ecnomidae,	QT08;	Hydropsychidae,	QT06;	
Philopotamidae,	QT04;	Hydroptilidae,	QT03;	Glossosomatidae,	QT02;	
Hydrobiosidae,	QT01)	

• 4	stonefly	families	(Plecoptera:	Notonemouridae,	QP04;	Gripopterygidae,	QP03;	
Austroperlidae,	QP02;	Eustheniidae,	QP01)	

• 5	mayfly	families	(Ephemeroptera:	Caenidae,	QE08;	Leptophlebiidae,	QE06;	
Coloburiscidae,	QE05;	Oniscigastridae,	QE03;	Baetidae,	QE02)	

• 6	dragonfly	and	damsefly	families	(Odonata:	Corduliidae,	QO16;	Aeshnidae,	
QO12;	Synlestidae,	QO08;	Megapodagrionidae,	QO07;	Lestidae,	QO05;	
Coenagrionidae,	QO02)	

• 1	dobsonfly	family	(Megaloptera:	Corydalidae,	QM01)	

• 3	‘true’	bug	families	(Hemiptera:	Notonectidae,	QH67;	Corixidae,	QH65;	Veliidae,	
QH56)	

• 8	beetle	families	(Coleoptera:	Ptilodactylidae,	QC39;	Psephenidae,	QC37;	
Elmidae,	QC34;	Scirtidae,	QC20;	Hydraenidae,	QC13;	Hydrophilidae,	QC11;	
Gyrinidae,	QC10;	Dytiscidae,	QC09)	

• 9	‘true’	fly	families	(Diptera:	Tanypodinae,	QDAE;	Podonominae,	QDAD;	
Empididae,	QD35;	Athericidae,	QD22;	Simuliidae,	QD10;	Ceratopogonidae,	QD09;	
Culicidae,	QD07;	Dixidae,	QD06;	Tipulidae,	QD01)	

• 4	crustacean	families	(Decapoda	and	Amphipoda:	Atyidae,	OT01;	Paramelitidae,	
OP06;	Pontogeneiidae,	OP03;	Ceinidae,	OP02)	

• 4	snail	families	(Gastropoda:	Physidae,	KG08;	Planorbidae,	KG07;	Ancylidae,	
KG06;	Lymnaeidae,	KG05)	

• a	leech	family	(Glossiphoniidae,	LH01),	and	a	flatworm	family	(Dugesiidae,	IF61).	

The	10	native	fish	species	and	two	native	lamprey	species	combined	in	a	single	model,	
and	their	codes—together	with	codes	for	the	three	platypus	models:	females	only,	all	
platypus	(Chee	et	al.	2020),	and	all	platypus	(Coleman	et	al.	2022)—are	listed	in	the	
table	vertSpp	(an	object	loaded	with	the	package)	(Table	1).	

	

	 	



Table	1.	Vertebrate	species	for	which	models	are	included	in	the	melbstreambiota	package	

vertcode	 species	 authority	 commonName	
ANGUAUST	 Anguilla	australis	 Richardson,	1841	 Southern	short-finned	eel	
GADOMARM	 Gadopsis	marmoratus	 Richardson,	1848	 River	blackfish	
GALABREV	 Galaxias	brevipinnis	 Günther,	1866	 Climbing	galaxias	
GALAMACU	 Galaxias	maculatus	 (Jenyns,	1842)	 Common	galaxias	
GALAORN	 Galaxias	ornatus	 Castelnau	1873	 Mountain	galaxias	
GALATRUT	 Galaxias	truttaceus	 Valenciennes,	1846	 Spotted	galaxias	
LAMPREYS	 Geotria	australis	 Gray,	1851	 Pouch	lampreya	
LAMPREYS	 Mordacia	mordax	 (Linnaeus	1758)	 Australian	lampreya	
NANNAUST	 Nannoperca	australis	 Günther,	1861	 Southern	pygmy	perch	
PHILGRAN	 Philypnodon	grandiceps	 (Krefft,	1864)	 Flathead	gudgeon	
PSEUURVI	 Pseudaphritis	urvillii	 (Valenciennes,	1832)	 Tupong	
RETRSEMO	 Retropinna	semoni	 (Weber,	1895)	 Australian	Smelt	
femPlaty	 Ornithorhynchus	anatinus	 (Shaw,	1799)	 Female	platypus	
allPlatyHWS	 Ornithorhynchus	anatinus	 (Shaw,	1799)	 Total	platypusb	
allPlatyColeman	 Ornithorhynchus	anatinus	 (Shaw,	1799)	 Total	platypusc	
aLamprey	species	combined	into	a	single	model	
bAll	platypus	model	used	by	Chee	et	al.	2020	
cAll	platypus	model	used	by	Coleman	et	al.	2022	

Mapping predictor variables 

The	59	boosted-regression-tree	models	(Elith,	Leathwick	&	Hastie	2008)	of	
macroinvertebrate	families	are	saved	as	model-objects	in	the	list	“bestModelsBugfams”,	
and	the	fish	and	platypus	models	are	saved	as	“bestModelsVerts”,	both	saved	in	a	
system	file	that	the	package	uses.	The	models	predict	the	probability	of	occurrence	of	
each	taxon	in	a	pair	of	rapid	bioassessment	samples	(a	standard	sampling	method	used	
in	the	region	since	the	early	1990s).	All	59	macroinvertebrate	models	use	the	same	10	
predictor	variables.	
require(melbstreambiota)	
exampleSamppr <- collateBugSamppr(mwstreams[1,], SRI_48mth_weighted = 1)	
names(exampleSamppr)[-1]	

##  [1] "AttImp_L9"                  "AttForest_L35W1000"        	
##  [3] "meanAnnQ_mm"                "CatchmentArea_km2_InclDams"	
##  [5] "mnAnnAirTm_deg"             "CatIgneous"                	
##  [7] "SRI_48mth_weighted"         "nspring"                   	
##  [9] "nriff"                      "processN"	

These	predictor	variables	constitute:	+	2	human-impact	variables	—	attenuated	
imperviousness	(AI,	or	“AttImp_L9”	in	“mwstreams”),	as	described	by	Walsh	&	Kunapo	
(2009),	and	attenuated	forest	cover	(AF,	or	“AttForest_L35W1000”	in	mwstreams),	as	
described	by	Walsh	&	Webb	(2014);	

• 4	variables	that	indicate	physiographic	variation	across	the	region	—	catchment	
area	(CatchmentArea_km2_InclDams),	mean	annual	discharge	depth	
(meanAnnQ_mm),	mean	air	temperature	(mnAnnAirTm_deg)	and	proportion	of	
catchment	with	igneous	geology	(CatIgneous);	

• A	single	variable	that	indicates	temporal	variation	in	stream	flow	—	linearly-
weighted	48-month	antecedent	discharge	as	a	fraction	of	the	long-term	mean	
discharge	(SRI_48mth_weighted:	see	below),	and;	



• 3	variables	that	indicate	sample	characteristics	—	number	of	riffle	samples	
(nriff:	0,	1,	or	2),	number	of	spring	samples	(nspring:	0,	1	or	2),	sample	
processing	method	(processN	0	=	lab-sorted;	1	=	field-sorted).	

For	fish	models,	the	same	core	variables	were	used,	together	with	the	number	of	partial	
and	full	barriers	as	additional	human-impact	variables.	
#The following command is used to build a predictor table to run fish models, setting 	
#antecedent rainfall (SRI...) at the long term average, and simulating the removal of 	
#of all fish barriers.  (Only a single row is extracted in order to list the column names)	
exampleFishSamp <- collateSampleFP(mwstreams[1,], SRI_48mth_weighted = 1, 	
                                   barriersFromYear = FALSE, 	
                                   PartBarriersDS = 0, FullBarriersDS = 0,	
                                   FishOrPlatypus = "fish")	
names(exampleFishSamp)[-1]	

## [1] "AttImp_L9"                  "AttForest_L35W1000"        	
## [3] "meanAnnQ_mm"                "CatchmentArea_km2_InclDams"	
## [5] "mnAnnAirTm_deg"             "CatIgneous"                	
## [7] "SRI_48_triang"              "PartBarriersDS"            	
## [9] "FullBarriersDS"	

Note	differences	in	the	names	of	SRI	and	barriers	variables	compared	to	those	in	
mwstreams.	These	variables	are	equivalent,	but	different	names	were	used	in	building	
the	models.	Note	also	that	fish	(and	platypus)	models	do	not	have	predictor	variables	
describing	sample	characteristics.	The	platypus	models	do	not	use	fish	barriers	as	
predictor	variables,	but	do	have	additional	human	impact	variables	describing	the	
quantity	of	vegetation	(vegBank)	and	large	woody	debris	(LWDBank).	Furthermore,	the	
platypus	models	use	forest	cover	in	a	10-m	buffer	from	the	stream	and	1-km	upstream	
(AFb10L1000)	rather	than	the	exponentially	weighted	forest	cover	metric	used	by	
other	models	(AttForest_L35W1000).	
#The same function can be used to build predictor tables for the platypus models	
	
examplePlatSamp <- collateSampleFP(mwstreams[1,], SRI_48mth_weighted = 1, 	
                                   FishOrPlatypus = "platypus")	
	
names(examplePlatSamp)[-1]	

## [1] "AttImpMin4k_L9"             "AFb10L1000"                	
## [3] "meanAnnQ_mm"                "CatchmentArea_km2_InclDams"	
## [5] "mnAnnAirTm_deg"             "CatIgneous"                	
## [7] "SRI_48_triang"              "LWDBank"                   	
## [9] "vegBank"	

An	important	criterion	in	the	selection	of	predictor	variables	for	the	models	was	that	
they	should	be	generalizable	to	all	reaches	in	the	region,	thus	allowing	prediction	of	
distributions	in	all	reaches.	The	table	“mwstreams”	is	saved	as	a	data	frame	with	the	
values	of	all	predictor	variables	(and	several	others	used	for	other	models)	for	each	of	
8256	reaches	in	the	region.	This	table	can	be	joined	to	the	simple	features	object	
“mw_stream_map”	to	create	graduated	maps	indicating	variation	in	each	variable	across	
the	region	using	the	function	plotMWstreamsByVar	(Fig.	1	shows	4	examples).	
SRI_48mth_weighted	values	for	every	subcatchment	for	every	month	from	December	
1984	are	stored	in	the	data	frame	sri48moW.	This	table	is	stored	in	the	repository	at	
https://osf.io/mcxrq/	(as	sri48moW.rda),	and	updated	annually.	It	should	therefore	
contain	SRI_48mth_weighted	values	until	previous	December	in	any	year.	The	package	
saves	this	table	to	the	user’s	cache,	which	may	become	out	of	date:	check	with	this	



command:	max(melbstreambiota::sri48moW$date).	To	update	the	table	in	your	cache	
run	the	function	update_sri.rda.	
par(mfrow = c(2,2))	
plotMWstreamsByVar(mwstreams$meanAnnQ_mm, varName = "meanQ", nbreaks = 8, style = "fixed",	
                   fixedBreaks = c(0,10,50,100,150,200,250,400,1000), legend.cex = 0.5)	
title(main = "  A", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwstreams$AttImp_L9, varName = "AI", nbreaks = 7, style = "fixed",	
                   fixedBreaks = c(0,0.001,0.005,0.01,0.02,0.05,0.1,0.7), rev = TRUE, 	
                   legend.cex = 0.5)	
title(main = "  B", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwstreams$AttForest_L35W1000, varName = "AF", nbreaks = 5, 	
                   style = "fixed", fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  C", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwstreams$mnAnnAirTm_deg, varName = "AirTemp", nbreaks = 8, 	
                   style = "fixed", fixedBreaks = 8:16, rev = TRUE, legend.cex = 0.5)	
title(main = "  D", adj = 0, line = -1.5) 

 

	
Fig.	1.	Variation	of	4	influential	predictor	variables	across	the	stream	network	of	the	Melbourne	region.	A.	
meanQ	(Mean	annual	discharge	depth	in	mm),	B.	AI	(proportion	attenuated	imperviousness),	C.	AF	
(proportion	attenuated	forest	cover),	D.	MearAirT	(Mean	air	temperature	in	deg	C)	



Mean	Annual	discharge	depth	(Fig.	1A)	was	commonly	a	strong	predictor	of	
distributions,	and	is	indicative	of	the	strong	climatic	gradient	across	the	Melbourne	
region	(Walsh	&	Webb	2014),	although	large	rivers	(such	as	the	Yarra	flowing	from	the	
east)	transport	high	discharges	through	drier	areas.	AI	(Fig.	1B)	shows	AI,	which	is	
highest	in	the	small	streams	of	the	Melbourne	Metropolitan	area	on	small	streams:	it	is	
noteworthy	that	two	large	rivers	(The	Yarra	from	the	east	and	the	Maribyrnong	from	
the	north)	remain	at	low	levels	of	AI	as	they	flow	into	the	metropolitan	area.	AF	(Fig.	
1C),	shows	the	distribution	of	agriculture	(areas	of	low	AF)	around	the	city,	and	the	
reservation	of	forested	areas	(high	AF)	in	upland	areas	to	the	north-west	and	to	the	
east.	Mean	air	temperature	is	primarily	driven	by	elevation:	it	is	used	in	the	models	
because	parallel	work	has	shown	that	air	temperature	in	combination	with	the	other	
physiographic	and	human	impact	variables	used	in	the	models	is	a	strong	predictor	of	
stream	temperature.	

Alternatively,	a	subset	of	the	full	stream	network	can	be	drawn	by	providing	a	subset	of	
subcs	to	be	drawn.	Two	methods	for	deriving	subsets	are:	

1. Use	the	subc	names	as	a	criterion	for	subsetting.	The	first	4	characters	of	each	
subc	indicate	one	of	23	subcatchments	(Table	2).	All	reaches	in	any	one	of	these	
23	subcatchments	can	be	selected	using	the	grep	function	(as	shown	in	Fig.	2a	
for	the	Maribyrnong	catchment).	

2. Select	all	reaches	upstream	of	a	known	subc,	using	the	list	of	all	upstream	subcs	
in	the	package	data	object	streamsubcs.allus2017.rda.	Locations	of	
subcatchments	can	be	determined	using	quickMapR	as	described	below.	Fig.2	b	
shows	the	streams	of	the	Merri	Creek	catchment	upstream	of	subc	YARR8590.	

Table	2.	subc	codes	begin	with	4	characters	specifying	which	of	the	23	catchments/catchment	groups	
they	fall	in.	

Code	 Catchment	
BASS	 Bass	R	
BUNY	 Bunyip	R	
CARD	 Cardinia	Ck	
DAND	 Dandenong	Ck	
DEEP	 Deep	Ck	(KooWeeRup	Swamp)	
ELST	 Elster	Ck	
FREN	 French	Island	streams	
KANA	 Kananook	Ck	
KORO	 Kororoit	Ck	
LANG	 Lang	Lang	R	
LAVE	 Laverton	Ck	
LITT	 Little	Ck	
MAIN	 Main	Ck	(Mornington	Peninsula)	
MARI	 Maribyrnong	R	
MORD	 Mordialloc	Ck	
MORP	 Mornington	Peninsula	streams	draining	to	Port	Phillip	
MORW	 Mornington	Peninsula	streams	draining	to	Westernport	
SKEL	 Skeleton	Ck	
TOOM	 Toomuc	Ck	
WERR	 Werribee	R	
WEST	 Phillip	Island	streams	
YALL	 Yallock	Ck	
YARR	 Yarra	R	

	



par(mfrow = c(1,2))	
#Select Maribyrnong reaches by the catchment identifier in the subc names	
mariSubcs <- mwstreams$subc[grep("MARI",mwstreams$subc)]	
#Select Merri Creek reaches by identifying all reaches upstream of the most downstream reac
h "YARR8590"(Idenfitied by checking the map in GIS.	
merriSubcs <- streamsubcs.allus2017$YARR8590	
plotMWstreamsByVar(mwstreams$CatchmentArea_km2_InclDams, varName = 	
                     "Catchment area (sq km)", nbreaks = 8, style = "quantile", 	
                   legend.cex = 0.5, subcSubset = mariSubcs)	
title(main = "  A. Maribyrnong River", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwstreams$CatchmentArea_km2_InclDams, varName = 	
                     "Catchment area (sq km)", nbreaks = 8, style = "quantile", 	
                   legend.cex = 0.5, subcSubset = merriSubcs)	
title(main = "  B. Merri Ck", adj = 0, line = -1.5) 

	

	
Fig.	2.	Variation	in	catchment	area	for	A)	the	Maribyrnong	River	catchment	and	B)	the	Merri	Creek	
catchment	

Predicting and mapping taxon distributions 

The	environmental	variables	in	“mwstreams”	permit	prediction	of	taxon	distributions	
under	2006	conditions	and,	with	some	manipulation,	under	alternative	scenarios.	
Predictions	can	be	made	with	the	“bugModPred1”	function,	which	requires	a	bugcode	
and	a	table	of	reaches,	each	with	values	for	the	10	predictor	variables	of	the	models.	
Walsh	&	Webb	(2016)	classified	families	into	a	several	sensitivity	classes,	and	these	(as	
modified	by	Walsh	(2023))	are	listed	for	each	taxon	in	the	taxon.classes	table.	This	table	
also	lists	the	bugcodes	and	full	name	for	each	family,	as	well	as	other	details.	The	
sensitivity	classes	are	well	illustrated	by	predicted	distribution	maps	under	2006	
conditions	(Fig.	3).	
QE06Pred <- bugModPred1("QE06", mwstreams)  #class A, a very sensitive family	
QT25Pred <- bugModPred1("QT25", mwstreams)  #class B, a moderately sensitive family	
QE08Pred <- bugModPred1("QE08", mwstreams)  #class D, sensitive to urban stormwater, 	
                                            #positively associated with forest loss	
IF61Pred <- bugModPred1("IF61", mwstreams)  #class weedy	
par(mfrow = c(2,2))	
plotMWstreamsByVar(QE06Pred$pred1,	
                   varName = paste(taxon.classes$family[taxon.classes$fam == "QE06"], 	
                                   "prob of occurrence"),	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  A", adj = 0, line = -1.5)	



plotMWstreamsByVar(QT25Pred$pred1,	
                   varName = paste(taxon.classes$family[taxon.classes$fam == "QT25"], 	
                                   "prob of occurrence"),	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  B", adj = 0, line = -1.5)	
plotMWstreamsByVar(QE08Pred$pred1,	
                   varName = paste(taxon.classes$family[taxon.classes$fam == "QE08"], 	
                                   "prob of occurrence"),	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  C", adj = 0, line = -1.5)	
plotMWstreamsByVar(IF61Pred$pred1,	
                   varName = paste(taxon.classes$family[taxon.classes$fam == "IF61"], 	
                                   "prob of occurrence"),	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  D", adj = 0, line = -1.5)	

	
Fig.	3,	Predicted	probability	of	occurrence	of	4	indicative	families.	A.	Leptophlebiidae	(QE08,	a	very	sensitive	
family)	B.	Leptoceridae	(QT25,	a	moderately	sensitive	family),	C.	Caenidae	(QE08,	sensitive	to	urban	
stormwater	runoff,	positively	associated	with	forest	loss),	D.	Lymnaeidae	(KG05,	a	weedy	family,	positively	
associated	with	human	impacts).	



Very	sensitive	families	such	as	leptophlebid	mayflies	(Fig.	3A)	have	very	low	
probabilities	of	occurrence	outside	forested	catchments,	while	moderately	sensitive	
families	such	as	leptocerid	caddisflies	(Fig.	3B)	maintain	high	probabilities	of	
occurrence	under	moderate	levels	of	agricultural	or	urban	impacts,	but	are	much	less	
likely	to	occur	in	highly	urban	streams.	Caenid	mayflies	(Fig.	3C)	are	strongly	negatively	
associated	with	urban	stormwater	runoff,	but	are	positively	associated	with	deforested,	
larger	streams.	Five	of	the	59	families	are	classed	as	weedy,	such	as	dugesiid	flatworms	
(Fig.	3D),	which	occur	most	commonly	in	the	most	degraded	urban	streams,	and	least	
commonly	in	forested	catchments.	

Similar	predictions	of	occurrence	for	fish	species	and	platypus	can	be	also	be	mapped	
(Fig.	4).	
mwstreamsFish <- collateSampleFP(mwstreams, SRI_48mth_weighted = 1, FishOrPlatypus = "fish"
,	
                                 barriersFromYear = FALSE, 	
                                 PartBarriersDS = mwstreams$nPartBarriersDS_2016, 	
                                 FullBarriersDS = mwstreams$nFullBarriersDS_2014)	
angaust2006 <- vertPred("ANGUAUST", mwstreamsFish)	
galamacu2006 <- vertPred("GALAMACU", mwstreamsFish)	
lampreys2006 <- vertPred("LAMPREYS", mwstreamsFish)	
mwstreamsPlat <- collateSampleFP(mwstreams, SRI_48mth_weighted = 1, FishOrPlatypus = "platy
pus")	
allplaty2006 <- vertPred("allPlatyColeman", mwstreamsPlat)	
par(mfrow = c(2,2))	
plotMWstreamsByVar(angaust2006,	
                   varName = paste(vertSpp$species[vertSpp$vertcode == "ANGUAUST"], 	
                                   "prob of capture"),	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = c(0,0.1,0.2,0.3,0.5,1), legend.cex = 0.5)	
title(main = "  A", adj = 0, line = -1.5)	
plotMWstreamsByVar(galamacu2006,	
                   varName = paste(vertSpp$species[vertSpp$vertcode == "GALAMACU"],	
                                   "prob of capture"),	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = c(0,0.1,0.2,0.3,0.5,1), legend.cex = 0.5)	
title(main = "  B", adj = 0, line = -1.5)	
plotMWstreamsByVar(lampreys2006,	
                   varName = "Lampreys (2 spp) prob of capture",	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = c(0,0.1,0.2,0.3,0.5,1), legend.cex = 0.5)	
title(main = "  C", adj = 0, line = -1.5)	
plotMWstreamsByVar(allplaty2006,	
                   varName = "Total platypus prob of capture",	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = c(0,0.15,0.25,0.35,0.5,1), legend.cex = 0.5)	
title(main = "  D", adj = 0, line = -1.5)	



	
Fig.	4.	Predicted	probability	of	occurrence	of:	A.	Southern	short-finned	eel	B.	common	galaxias,	C.	Lampreys	
(two	species	combined),	D.	(total)	Platypus	(as	modelled	by	Coleman	et	al.	2022)	

Alternative	scenarios	can	be	explored	for	the	distribution	of	each	family	by	
manipulating	the	environmental	data.	For	example:	

• No	human	impacts	can	be	simulated	by	setting	AI	to	zero	and	AF	to	1.	Such	a	
prediction	is	the	basis	of	the	expected	term	in	the	LUMaR	index	(see	below),	and	
is	calculated	together	with	the	current	(2006)	condition	using	the	
“bugModPred1”	function.	

• The	mwstreams	table	contains	four	variables	recalculating	AF	from	2006	
conditions,	assuming	vegetated	buffers	along	all	streams.	The	effect	of	
revegetating	all	streams	with	a	(say)	40-m	forested	buffer	can	be	predicted	by	
replacing	the	values	in	“AttForest_L35W1000”	with	“Att.Forest_40mBuffer”.	

• Future	urban	expansion	scenarios	assuming	standard	stormwater-management	
practice	have	been	developed	by	mapping	areas	of	proposed	development	and	
assume	AI	in	such	developments	is	close	to	total	imperviousness.	The	
mwstreams	table	contains	AI	estimates	for	2006,	2014	and	‘ultimate’	(assuming	



development	of	all	areas	zoned	for	urban	development	within	the	urban	growth	
boundary),	with	matching	estimates	for	the	‘min4k’	variant	of	AI	
(AttImpMin4k_L9)	that	is	used	for	predicting	platypus	distribution.	The	min4k	
variant	is	the	minimum	AI	value	in	any	reach	within	4	km	downstream	of	a	site,	
as	determined	by	Martin	et	al.	(2014).	Alternatively,	the	hypothesized	effects	of	
retaining	stormwater	to	remove	its	impacts	from	streams	could	be	simulated	by	
setting	AttImp_L9	to	zero.	

• The	effects	of	climate	change	could	be	predicted	by	adding	a	set	amount	to	
mnAnnAirTm_deg.	Long-term	changes	in	mean	annual	discharge	could	also	be	
simulated	by	changing	the	“meanAnnQ”	variable.	Calculation	of	such	scenarios	
are	in	progress.	

mwstreamsb40 <- mwstreams	
#simulate a 40-m forested buffer along all streams	
mwstreamsb40$AttForest_L35W1000 <- mwstreamsb40$Att.Forest_40mBuffer	
QT25b40 <- bugModPred1("QT25", mwstreamsb40)	
mwstreamsaiUlt <- mwstreams	
mwstreamsaiUlt$AttImp_L9 <- mwstreamsaiUlt$AttImp_L9_Ultimate	
QT25aiUlt <- bugModPred1("QT25", mwstreamsaiUlt)	
mwstreamst2 <- mwstreams	
mwstreamst2$mnAnnAirTm_deg <- mwstreamst2$mnAnnAirTm_deg + 2	
#5020/8256 reaches now have mnAnnAirTm_deg > maximum value in mwstreams. To reduce 
extrapolation, cap the absolute increase in air temperature to 0.5 degrees greater 
than the maximum in mwstreams (this capping applies primarily to already-degraded 
lowland streams)	
mwstreamst2$mnAnnAirTm_deg[mwstreamst2$mnAnnAirTm_deg > 	
                             max(mwstreams$mnAnnAirTm_deg) + 0.5] <-	
                   max(mwstreams$mnAnnAirTm_deg) + 0.5	
QT25t2 <- bugModPred1("QT25", mwstreamst2)	
par(mfrow = c(2,2))	
plotMWstreamsByVar(QT25Pred$pred1NHI,	
                   varName = "P under no human impact",	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  A", adj = 0, line = -1.5)	
plotMWstreamsByVar(QT25b40$pred1,	
                   varName = "P with 40-m forested buffers",	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  B", adj = 0, line = -1.5)	
plotMWstreamsByVar(QT25aiUlt$pred1,	
                   varName = "P assuming 'ultimate' urban growth",	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  C", adj = 0, line = -1.5)	
plotMWstreamsByVar(QT25t2$pred1,	
                   varName = "P 2-deg warmer",	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = seq(0,1,0.2), legend.cex = 0.5)	
title(main = "  D", adj = 0, line = -1.5)	



	
Fig.	5.	Predicted	probability	of	occurrence	of	Leptoceridae	under	four	example	scenarios.	A.	No	human	
impacts,	B.	Reafforestation	of	40-m	buffers	along	all	streams	of	the	region,	C.	Removal	of	all	urban	
stormwater	impacts,	D.	Increase	of	2	degrees	in	air	temperature.	

For	a	moderately	sensitive	family	such	as	Leptoceridae,	the	models	predict	a	high	
probability	of	occurrence	in	all	streams	in	the	absence	of	human	impacts	(Fig.	5A).	
Reafforestation	of	streams	of	the	region	with	40-m	forested	buffers	is	predicted	to	
increase	the	probability	of	occurrence	of	Leptoceridae	substantially	in	agricultural	
areas	of	the	region,	but	result	in	little	change	in	metropolitan	streams	(Fig.	5B).	The	
increased	urban	stormwater	impacts	that	would	result	from	the	ultimate	expansion	of	
Melbourne	assuing	business-as-usual	stormwater	practice	is	predicted	to	reduce	the	
probability	of	leptocerid	occurrence	in	streams	to	the	north	and	west	of	the	city	that	
drain	urban	growth	areas	(Fig.	5C).	An	increase	in	mean	air	temperatures	of	2∘C	is	
predicted	to	reduce	the	probability	of	occurrence	in	most	streams	of	the	region,	
particularly	small	streams	(Fig.	5D).	

Predicting and mapping ensemble predictions and indices 

LUMaR	is	an	index	of	stream	condition.	It	can	be	calculated	for	pairs	of	
macroinvertebrate	samples	collected	from	any	reach	in	the	region.	Because	every	reach	



has	an	estimated	value	for	each	of	the	predictor	variables	it	is	also	possible	to	predict	
LUMaR	score	for	each	reach	without	a	sample.	Calculation	of	LUMaR	with	sample	data	
will	be	considered	below,	but	here,	I	describe	the	prediction	of	LUMaR	based	solely	on	
the	predictor	variables.	Predicted	values	of	LUMaR	under	current	(2006)	conditions	and	
under	no	human	impact	can	be	calculated	as	follows:	

1. assemble	predictions	(current	and	no	human	impact)	for	all	families	using	the	
“predCurrNHI59”	function;	

2. use	the	function	“prob59ToPA”	to	convert	the	current	predictions	from	
probabilities	to	inferred	presences	or	absences	using	the	“pa.threshold”	field	in	
the	taxon.classes	table	(this	is	necessary,	as	LUMaR	requires	its	observed	data	to	
be	presence	(1)	or	absence	(0))	

3. use	the	predicted	current	presence-absence	data	frame,	and	the	predicted	no-
human-impact	data	frame	as	the	obs.table	and	exp.table	arguments	of	the	
“lumar”	function	respectively	to	calculate	LUMaR.	

The	“bugModPred59”	function	combines	the	above	3	steps	and	returns	not	only	
predicted	LUMaR	scores,	but	also	SIGNAL2,	and	number	of	sensitive	families.	Each	of	
these	metrics	is	strongly	correlated	with	human	impacts	across	the	region	(Walsh	
(2023)).	It	should	be	noted	that	the	SIGNAL2	value	is	based	only	on	the	59	modelled	
taxa:	normally	SIGNAL2	for	a	sample	is	calculated	using	all	of	the	taxa	collected.	If	
SIGNAL	scores	are	of	interest,	then	the	function	bugModPredSIGNAL()	produces	
predictions	of	SIGNAL	scores	calculated	using	whole	samples,	not	just	the	59	modelled	
families.	These	predictions	are	based	on	boosted	regression	tree	models	of	SIGNAL	and	
SIGNAL2	using	the	same	set	of	samples	as	used	for	the	59	family	models.	

The	predicted	index	values	calculated	by	“lumar”	can	be	mapped	in	the	same	way	as	for	
the	environmental	variables	and	individual	family	predictions	(Fig.	6).	Fig	6B	and	C	
show	predictions	from	bugModPredSIGNAL().	

#calculate LUMaR (in 2006 and under no human impact) for all reaches the long way.
..	
mwstreams59preds <- predCurrNHI59(mwstreams)	
mwstreamsCurrpa <- prob59ToPA(mwstreams59preds$predCurr)	
mwstreamsLumar <- lumar(mwstreamsCurrpa, mwstreams59preds$predNHI)	
mwstreamsNHIpa <- prob59ToPA(mwstreams59preds$predNHI)	
mwstreamsNHILumar <- lumar(mwstreamsNHIpa, mwstreams59preds$predNHI)	
# and the same calculation the short way, also getting SIGNAL2 and nSensFams	
mwstreamsIndices <- bugModPred59(mwstreams)$sampprPredsLumar	
#check both methods give the same answer...	
# # sum(mwstreamsIndices$lumar != mwstreamsLumar$lumar)  #should be zero if they a
re	
#and for No human impact	
mwstreamsNHI <- mwstreams	
mwstreamsNHI$AttImp_L9 <- 0	
mwstreamsNHI$AttForest_L35W1000 <- 1	
mwstreamsNHIIndices <- bugModPred59(mwstreamsNHI)$sampprPredsLumar	
#Use the bugModPredSIGNAL() function to make a matching prediction of SIGNAL2 scor
es	
mwsSIG <- bugModPredSIGNAL(mwstreams)	
par(mfrow = c(3,2))	
plotMWstreamsByVar(mwstreamsLumar$lumar,	
                   varName = "LUMaR (2006)",	



                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = c(-1,0,0.25,0.5,0.75,1), legend.cex = 0.5)	
title(main = "  A", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwstreamsNHILumar$lumar,	
                   varName = "LUMaR (no human impact)",	
                   nbreaks = 5, style = "fixed",	
                   fixedBreaks = c(-1,0,0.25,0.5,0.75,1), legend.cex = 0.5)	
title(main = "  B", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwsSIG$SIGNAL2,	
                   varName = "SIGNAL2 (2006)",	
                   nbreaks = 6, style = "fixed",	
                   fixedBreaks =  c(0,3,3.75,4.5,5.25,6,8), legend.cex = 0.5)	
title(main = "  C", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwsSIG$SIGNAL2nhi,	
                   varName = "SIGNAL2 (no human impact)",	
                   nbreaks = 6, style = "fixed",	
                   fixedBreaks = c(0,3,3.75,4.5,5.25,6,8), legend.cex = 0.5)	
title(main = "  D", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwstreamsIndices$nSensFams,	
                   varName = "N Sens taxa (2006)",	
                   nbreaks = 6, style = "fixed",	
                   fixedBreaks = c(0,3,6,12,18,24,35), legend.cex = 0.5)	
title(main = "  E", adj = 0, line = -1.5)	
plotMWstreamsByVar(mwstreamsNHIIndices$nSensFams,	
                   varName = "N Sens taxa (no human impact)",	
                   nbreaks = 6, style = "fixed",	
                   fixedBreaks = c(0,3,6,12,18,24,35), legend.cex = 0.5)	
title(main = "  F", adj = 0, line = -1.5)	



	
Fig.	6.	Predicted	LUMaR	score	(A)	under	2006	conditions,	(B)	under	no	human	impact,	and	similar	contrasts	
for	SIGNAL2	(C	and	D),	and	number	of	sensitive	families	(E	and	F)	

Metropolitan	streams	(except	the	Yarra	and	the	Maribyrnong)	are	associated	with	
lowest	LUMaR,	SIGNAL2	scores	and	fewest	sensitive	taxa,	and	streams	in	cleared	
agricultural	catchments	also	have	lower	LUMaR,	SIGNAL2	scores	and	fewer	sensitive	
taxa	than	upland	forested	streams	(Fig	6A,	C,	E).	While	all	three	indicators	are	sensitive	
to	human	impacts,	the	predictions	of	the	indicators	under	no	human	impact	(Fig	6B,	D,	
F)	show	the	advantage	of	LUMaR	over	the	other	two,	in	that	it	is	predicted	to	have	an	
equivalent	score	of	1	under	no	human	impacts	across	the	region	(Fig.	6B).	In	contrast,	



drier,	lowland	streams	are	predicted	to	have	fewer	sensitive	taxa	(Fig.	6F),	and	
resultantly	lower	SIGNAL2	scores	(Fig.	6D)	under	no	human	impact.	

Calculating LUMaR score from macroinvertebrate samples. 

Calculating	LUMaR	scores	from	collected	macroinvertebrate	samples	requires	
preprocessing	of	sample	data	to	produce	two	tables.	

1. A	table	with	salient	information	about	each	samppr	is	also	required.	This	table	
needs	to	provide	a	samppr	code	(matching	those	in	the	macroinvertebrate	table	
[2,	below]),	a	subcatchment	code	(subc),	a	date	of	sampling,	and	values	for	nriff	
(number	of	riffle	samples),	nspring	(number	of	spring	samples),	and	processN	(0	
=	lab-sort;	1	=	field-sort).	With	this	information,	the	function	“collateBugSamppr”	
can	be	used	to	compile	predictor	variables	required	for	LUMaR	calculation.	

• Importing	date	data	into	R	is	often	challenging,	but	if	dates	are	formatted	in	
excel,	then	importing	the	data	using	readxl::read_excel	(see	below)	usually	
works	without	pain.	Dates	are	only	necessary	to	calculate	antecedent	discharge.	
If	dates	are	unavailable,	or	values	of	“SRI_48mth_weighted”	are	known,	this	field	
can	be	supplied	as	an	argument	to	“collateBugSamppr”,	instead	of	dates.	

• Determining	the	subcatchment	code	for	each	samppr	will	require	matching	site	
locations	to	reaches,	which	is	best	done	in	GIS	software	using	both	the	streams	
layer	(the	“mwstreams_map”	object	in	this	package),	and	its	associated	
subcatchment	map.	(Both	layers	available	in	mwstreams_subcs_coast.gpkg	from	
the	melbstreambiota	open	science	framework	repository:	
https://osf.io/mcxrq/).	If	subcs	need	to	be	determined	for	only	a	few	sites	(or	if	
you	have	more	than	a	few,	and	a	lot	of	time	on	your	hands),	this	could	potentially	
be	achieved	in	R	using	the	“quickmapr”	package,	using	the	following	commands.	

  melmap <- quickmapr::qmap(mwstreams_map, mwcoast_map, colors = c("blue","black"
))	
  quickmapr::ze(melmap) #to zoom	
  quickmapr::i(melmap) #to identify subc and other reach information	
  quickmapr::f(melmap) #to unzoom	
  ?quickmapr #for more options	

2. Macroinvertebrate	taxa	collected	from	two	rapid	bioassessment	samples	(EPA	
Victoria	2003)	need	to	be	combined	to	form	each	sample	pair.	If	the	data	are	
arranged	in	a	3	column	table	(sample,	taxon,	abundance),	then	combining	
samples	is	as	simple	as	creating	a	new	column	‘sample-pair’,	so	that	pairs	of	
samples	have	the	same	sample-pair	code	(the	melbstreambiota	package	calls	
these	codes	samppr).	The	unique	sample-pairs	in	this	table	must	match	the	list	of	
sample-pairs	in	the	sample-pair	table.	The	“collateObsTable”	function	ignores	
the	abundance	field	and	reduces	each	sample	pair	to	unique	taxa.	Taxa	need	to	
be	identified	by	EPA	Victoria	bugcodes	(used	in	calculation	of	[AUSRIVAS]	
(http://www.mdfrc.org.au/bugguide/resources/AUSRIVAS_Taxacodes.pdf)).	It	
doesn’t	matter	if	taxa	are	identified	to	lower	taxonomic	levels	than	used	by	
LUMaR.	The	‘collateBugSamppr’	function	uses	only	the	first	4	characters	of	the	
bugcodes,	thus	automatically	lumping	to	family	level.	It	also	removes	
unmodelled	taxa	and	alters	some	taxonomic	conventions	to	match	the	LUMaR	
conventions	(with	warnings).	Alternatively	taxa	can	be	arranged	in	a	taxoncode	



(columns)	by	samppr	(rows)	matrix	(with	abundances	or	presence-absences	in	
the	data).	The	example	excel	file	illustrates	both	formats.	
	

#The sample pairs table imported from an excel file (8 sample pairs)	
sampprs <- as.data.frame(readxl::read_excel(system.file("extdata","exampleData.xlsx",	
                                                        package = "melbstreambiota", mustWo
rk = TRUE),	
                                            sheet = 1))	
sampprs	

##                     samppr stream     subc nriff nspring       date  process	
## 1 BRS0015.2007.12.lab-sort    BRS YARR8202     1       2 2007-12-01 lab-sort	
## 2 OLN0009.2007.12.lab-sort    OLN YARR8822     1       2 2007-12-01 lab-sort	
## 3  BRS0015.2008.4.lab-sort    BRS YARR8202     1       0 2008-04-01 lab-sort	
## 4  OLN0009.2008.4.lab-sort    OLN YARR8822     1       0 2008-04-01 lab-sort	
## 5 BRS0015.2008.12.lab-sort    BRS YARR8202     1       2 2008-12-01 lab-sort	
## 6 OLN0009.2008.12.lab-sort    OLN YARR8822     1       2 2008-12-01 lab-sort	
## 7  BRS0015.2009.4.lab-sort    BRS YARR8202     1       0 2009-04-01 lab-sort	
## 8  OLN0009.2009.4.lab-sort    OLN YARR8822     1       0 2009-04-01 lab-sort	

#The matching macroinvertebrate data as a two-column dataset	
bugData <- as.data.frame(readxl::read_excel(system.file("extdata","exampleData.xlsx",	
                                                        package = "melbstreambiota", mustWo
rk = TRUE),	
                                            sheet = 2))	
head(bugData)	

##                     samppr bugcode abundance	
## 1  OLN0009.2008.4.lab-sort    IB01   2.00000	
## 2  BRS0015.2008.4.lab-sort    IF61   1.00000	
## 3  BRS0015.2009.4.lab-sort    IF61   1.00000	
## 4 BRS0015.2008.12.lab-sort    KG02  19.66667	
## 5 OLN0009.2007.12.lab-sort    KG02  45.00000	
## 6 OLN0009.2008.12.lab-sort    KG02  30.00000	

#Sheet 3 of the excel file contains the same data in a samppr-by-bugcode matrix	

With	the	two	tables	imported,	calculating	LUMaR	scores	of	the	samples	is	a	four-step	
process:	

1. Use	the	“collateBugSamppr”	function	to	collate	the	predictor	variables	into	the	
sample-pairs	table	

2. Use	the	“predCurrNHI59””	to	calculate	expected	probabilities	of	occurrence	in	
the	absence	of	human	impacts	and	format	as	required	for	the	expTable	argument	
of	the	“lumar”	function	

3. Format	the	macroinvertebrate	data	into	a	matching	obsTable	using	the	
“collateObsTable”	function	

4. run	the	lumar	function	using	the	obsTable	and	the	expTable.	

sampprs <- collateBugSamppr(sampprs)	
expTables <- predCurrNHI59(sampprs)	
obsTable <- collateObsTable(bugData, sampprs)	

## Your bugData does not include any entries for the following families that are used by LU
MaR.	
## This may, of course, be correct, but check for any unexpected omissions, and check bugco
de/taxonomy. 	
##  QO12 	
##  OT01 	



##  QE02 	
##  QE08 	
##  QT24 	
##  QE05 	
##  QM01 	
##  QD06 	
##  QP01 	
##  QT17 	
##  QO05 	
##  QO07 	
##  QE03 	
##  OP06 	
##  QT04 	
##  QO08	

## Warning: The following bugcodes were excluded as they are not used in LUMaR calculations
:	
## LH05, LO03, LO05, LO06, LO08, LO11, MM99, OR25, QD12, QD23, QD24, QDAF, QDAJ, KG02, OP01
, QD89, KG09, QK01, QH52, QO21, IB01.	

exampleLumar <- lumar(obsTable, expTables$predNHI)	
exampleLumar[,1:3]  #just first 3 columns for display purposes	

##                     samppr       lumar nSensFams	
## 1 BRS0015.2007.12.lab-sort -0.07923222         4	
## 2 OLN0009.2007.12.lab-sort  0.76537171        24	
## 3  BRS0015.2008.4.lab-sort  0.08218193         6	
## 4  OLN0009.2008.4.lab-sort  0.67667656        20	
## 5 BRS0015.2008.12.lab-sort  0.17519829        10	
## 6 OLN0009.2008.12.lab-sort  0.75338553        21	
## 7  BRS0015.2009.4.lab-sort  0.25886586        10	
## 8  OLN0009.2009.4.lab-sort  0.63658501        18	

The	lumar	function	returns	a	number	of	sub-indices	that	can	be	used	to	diagnose	
patterns	in	the	LUMaR	score,	but	the	most	important	outputs	are	LUMaR	score	itself	
(lumar)	and	the	number	of	sensitive	families	(nSensFam),	both	of	which	are	strong	
indicators	of	stream	health	(Walsh	2017).	

Furthermore,	the	function	calcSIGNAL()	can	be	used	to	calculate	SIGNAL	and	SIGNAL2	
scores	from	the	supplied	macroinvertebrate	data.	Unlike	other	functions	in	this	
package,	it	doesn’t	require	samples	be	compiled	into	pairs	of	rapid	bioassessment	
samples,	although	the	input	data.frame	does	require	an	ID	field	named	samppr.	
(bugData).	This	function	calculates	SIGNAL	using	all	taxa	listed	in	each	sample,	not	just	
the	59	modelled	families.	Input	data	format	requirements	are	the	same	as	for	
collateObsTable().	
calcSIGNAL(bugData)	

##                     samppr   SIGNAL  SIGNAL2	
## 1 BRS0015.2007.12.lab-sort 4.000000 2.384615	
## 2 BRS0015.2008.12.lab-sort 5.533333 3.812500	
## 3  BRS0015.2008.4.lab-sort 4.352941 2.611111	
## 4  BRS0015.2009.4.lab-sort 5.578947 3.650000	
## 5 OLN0009.2007.12.lab-sort 6.322581 5.375000	
## 6 OLN0009.2008.12.lab-sort 6.333333 5.714286	
## 7  OLN0009.2008.4.lab-sort 6.440000 5.560000	
## 8  OLN0009.2009.4.lab-sort 6.363636 5.500000	

Diagnostic tools: interpreting the LUMaR results 

The	melbstreambiota	package	includes	two	primary	diagnostic	tools	for	interpreting	
LUMaR	results.	



1. The	“sampprDiagnostic”	function	permits	interpretation	of	an	observed	LUMaR	
score	at	an	individual	site.	Fig.	7	shows	the	output	for	one	of	the	sites	in	the	
example	dataset	(a	sample	pair	from	Brushy	Creek	in	the	eastern	suburbs	of	
Melbourne).	

#Use the same sampprs, expTables and obsTable as above	
#Use the same sampprs, expTables and obsTable as above	
sampprDiagnostic(samppri = sampprs[3,],	
                 obsTable = obsTable, currentPredTable = expTables$predCurr,	
                 NHIPredTable = expTables$predNHI)	

	
Fig.	7.	Output	of	samppDiagnostic(),	comparing	the	observed	LUMaR	score	to	the	predicted	score	for	2006	
conditions,	and	listing	the	most	influential	taxa	resulting	in	this	sampple	pair	scoring	less	than	would	be	
expected	in	the	absence	of	human	impacts	(reference).	If	the	observed	LUMaR	score	fell	outside	the	predicted	
range	for	2006,	a	second	plot	would	be	presented	identifying	taxa	influencing	that	difference.	

The	output	shows	that	the	LUMaR	score	of	this	sample-pair	falls	within	the	predicted	
range	for	LUMaR	at	this	site	under	2006	conditions	(plot	on	the	left).	The	observed	
score	of	0.08	is	less	than	would	be	expected	in	the	absence	of	human	impacts	(a	score	of	
>0.75	is	predicted	for	such	sites).	The	second	plot	shows	the	influence	of	the	most	
influential	taxa	causing	the	LUMaR	score	to	be	less	than	reference	condition	(i.e.	no	
human	impacts).	The	taxa	indicated	by	asterisks	occurred	in	the	sample	but	were	
unexpected,	thus	downweighting	the	LUMaR	score.	These	five	unexpected	families	were	
weedy	(see	Walsh	(2023)	for	definitions	of	these	sensitivity	classes).	Taxa	without	
asterisks	are	those	that	were	predicted	to	be	present	in	the	sample,	but	were	not	(thus	
downweighting	the	score).	Leptocerid,	hydrobiosid,	hydropsychid	caddisflies,	tanypod	
midges,	elmid	and	psephenid	beetles,	gripopterygid	stoneflies	(all	moderately	sensitive,	
class	B),	leptophlebiid	mayflies	and	scirtid	beetles	(very	sensistive,	class	A),	and	veliid	
bugs	and	atyid	shrimp	(sensitive	to	urban	impacts,	less	so	forest	loss,	class	C)	were	the	
primary	absences	driving	the	lower	score.	The	unexpected	presence	of	several	weedy	
species,	and	the	unexpected	absence	of	several	moderately	sensitive	taxa	in	this	sample-
pair	suggests	that	this	site	(Brushy	Creek	in	suburban	Mooroolbark)	is	degraded.	



If	the	LUMaR	score	of	the	sample-pair	was	to	fall	outside	the	expected	range	under	2006	
conditions,	an	additional	plot	would	be	plotted	on	the	right,	showing	the	influence	of	the	
most	influential	taxa	driving	that	difference.	Walsh	(2023)	illustrated	and	interpreted	
such	an	example.	

2. “plotSensFamDiagnostics”	is	a	diagnostic	tool	to	aid	understanding	of	differences	
in	LUMaR	between	groups	of	sample-pairs	of	among	sample-pairs	that	are	from	
a	gradient	described	by	a	covariate.	In	the	example	dataset	in	the	
melbstreambiota	package,	the	eight	sample	pairs	were	collected	from	two	
streams	(urban	Brushy	Creek,	BRS,	and	forested	Olinda	Creek,	OLN:	see	Burns	et	
al.	(2012)	and	Walsh,	Fletcher	&	Burns	(2012)	for	a	comparison	of	the	urban	
stormwater	impacts	of	these	streams).	The	LUMaR	scores	from	Brushy	Creek	are	
substantialy	lower	than	from	Olinda	Creek.	The	differences	in	LUMaR	scores	as	
defined	by	the	covariate	argument	in	“plotSensFamDiagnostics”	are	illustrated	in	
the	first	plot	produced	by	the	function	(Fig.	8)	

#Use the same expTables, obsTable, exampleLumar, and stream covariate as above	
# What taxa explain differences in LUMaR between the two streams (BRS and OLN)	
stream <- factor(substr(exampleLumar$samppr,1,3), levels = c("BRS","OLN"))	
famStreamEffects <- famCovariateEffects(obsTable, expTables$predNHI, stream)	
sensStreamEffects <- sensGpCovariateEffects(exampleLumar, stream)	
plotSensFamDiagnostics(exampleLumar, stream, covariateName = "stream",	
                       sensLinEffects = sensStreamEffects,	
                       famLinEffects = famStreamEffects)	



	
Fig.	8.	Output	of	plotSensFamDiagnostics(),	comparing	LUMaR	scores	in	samples	from	Brushy	Creek	(BRS)	
and	Olinda	Creek	(OLN).	

The	bottom	left	plot	of	the	“plotSensFamDiagnostics”	shows	the	relative	importance	of	
each	sensitivity	group	(whether	it	was	observed	and	expected,	or	observed	but	
unexpected).	In	this	example,	the	primary	driver	of	OLN	sample-pairs	having	higher	
LUMaR	scores	than	BRS	sample	pairs	is	the	absence	of	several	expected	sensitive	taxa	
from	BRS	that	were	expected	and	found	at	OLN	(Obs	B)	and	the	unexpected	presence	of	
the	invasive	snail	Physa	(Invas)	at	BRS.	The	plot	on	the	right	identifies	the	most	
influential	sensitive	families	as	Gripopterygidae,	Leptoceridae,	Hydrobiosidae	and	
Psephenidae.	
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